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Motivation

Diffusion models, while adept at generating high-quality images from text, often produce limited
visual diversity, especially under high classifier-free guidance settings. For instance, given a descrip-
tion, “a cat sat on the mat”, existing text-to-image diffusion models predominantly produce image
samples depicting cats with similar colors and patterns.

To tackle this, we introduce Kaleido – a new method that improves conditional diffusion model
generation by incorporating autoregressive latent priors! This allows us generate much more di-
verse outputs even with high CFG just like a kaleidoscope.

Kaleido Diffusion

We propose Kaleido, a general framework that integrates an autoregressive prior with diffusion
model to enhance image generation. Kaleido comprises two major components: an AR model that
generates latent tokens as abstract representations, and a latent-augmented diffusion model that
iteratively synthesizes images based on these latents together with the original condition.

(1) Autoregressive Latent Modeling:

Given the original context c, Kaleido employs an autoregressive model p◊(z|c), to generate abstract
discrete latents z = [z1, . . . zN ], serving as an intermediary representation for guiding the generation
process. We explore various latents, including textual descriptions, bounding boxes, blobs, and
abstract visual tokens.

(2) Latent-augmented Diffusion Models:

The diffusion model is conditioned on both the original text prompt c and the autoregressively
generated discrete latents z for generating an image x. To capture the complex distribution of real
images, Kaleido explicitly model “mode selection” through p◊(z|c) and leave p◊(x|z, c) to model
other variations including local noise by applying diffusion steps.

The image generation follows a two-step procedure: z ≥ p◊(z|c), x ≥ p̃◊(x|z, c), where CFG can
be applied after z is sampled. From the perspective of score function, diffusion with CFG in Kaleido
can be written as:

Òx log p̃◊(x|c, z) = “
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log p◊(x|c) + log p◊(z|x, c) ≠ log p◊(x)

�⇤
+ Òx log p◊(x).

Compared to standard diffusion process, the highlighted term above pushes the updating direction
towards the sampled modes at each step, ensuring diverse generation as long as p◊(z|c) is diverse.

Quantitative Results

Compared with the baseline diffusion models (MDM) with various guidance scales, Kaleido consis-
tently enhances the diversity of samples without compromising their quality across different CFG,
evidenced by the general improvement in both FID and Recall.
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